The evolution of biological nitrogen fixation is central to the evolution of life on earth. Nitrogen is an essential component of proteins and nucleic acids and its restricted availability to living organisms has often been a major factor limiting growth. Despite the overwhelming abundance of N2 gas in the atmosphere, di-nitrogen is chemically inaccessible to most forms of life. For their growth and metabolism, most organisms use the ‘fixed’ forms of nitrogen, either as ammonium (NH4+) or as nitrate (NO3-), or derivatives thereof. However, the major input into the global nitrogen cycle is through the reductive process of biological nitrogen fixation which converts atmospheric N2 into ammonia (NH3). This process evolved in bacteria and/or archaea over 2.5 billion years ago while the planet still had a reducing atmosphere. Today, biological nitrogen fixation is still restricted to the bacteria and archaea. The legume root nodule symbiosis allows the host plant to benefit directly by association with soil bacteria, collectively termed rhizobia, which fix nitrogen as endosymbionts.

This content is only available as a PDF.