1. Anaerobic conditions are normally necessary for incorporation of iron into haems and only ferrous iron is used. After addition of succinate to an incubation mixture containing intact or ultrasonically treated mitochondria, Fe3+ is used, but only if no inhibitors prevent the transfer of electrons from the mitochondrial respiratory chain to oxygen. 2. A dual-wavelength spectrophotometric assay for ferrochelatase is described that has been used for the continuous assay of incorporation of metal ions into porphyrins. Constants are given for the determination of rates of formation of protohaem and cobalt protoporphyrin, mesohaem, cobalt mesoporphyrin and zinc mesoporphyrin. For cobalt mesoporphyrin formation the Km for Co2+ is 11×10−6m and that for mesoporphyrin is 5×10−6m. 3. An improved method for the separation of inner and outer membranes of mitochondria is described. Mitochondria swollen in hypo-osmotic media were contracted in hyperosmotic potassium chloride solution containing ATP and the outer membranes detached by mild ultrasonic treatment. Sucrose inhibited the ATP-induced contraction and decreased the yield of outer membranes. 4. Ferrochelatase is associated with cytochrome oxidase, which is used as a marker for inner mitochondrial membranes. 5. By using as substrate porphyrin dissolved in phospholipid micelles, ferrochelatase activity of intact mitochondria was shown to be latent, and to be liberated by ultrasonic treatment. 6. No ferrochelatase was detectable in microsomes or soluble cell components.

This content is only available as a PDF.
You do not currently have access to this content.