Both rat liver and Escherichia coli rRNA in 0.1m-sodium chloride were titrated with acid or alkali over the range pH3–7 at approx. 0°C. rRNA did not bind acid reversibly and hysteresis was observed, i.e. the plot of acid bound to rRNA against pH had the form of a loop showing that the amount of acid bound at a particular pH depended on the direction of the titration. Although the boundary curves were reproducibly followed on titration from pH7 to 3 and from pH3 to 7, points within the loop were ‘scanned’, e.g. by titration from pH7 to a point in the range pH3–4 followed by titration with alkali to pH7. It is inferred that the ‘lag’ in the release of certain bound protons is at least 1 pH unit, that at least about 9–15% of the titratable groups (adenine and cytosine residues) that are involved in this process and that the free energy dissipated in completing a cycle is approx. 4.2kJ/mol (1kcal/mol) of nucleotide involved in hysteresis. The interpretation of the ‘scanning’ curves was illustrated by means of a cycle of possible changes in the conformation of a hypothetical nucleotide sequence that allows formation of poly(A)·poly(AαH+)-like regions in acidic solutions. It is also inferred that the extent of ‘hysteresis’ might depend on the primary nucleotide sequence of rRNA as well as on secondary structure.

This content is only available as a PDF.
You do not currently have access to this content.