The biosynthesis and stability of various RNA fractions was studied in RCstr and RCrel multiple amino acid auxotrophs of Escherichia coli. In conditions of amino acid deprivation, RCstr mutants were labelled with exogenous nucleotide bases at less than 1% of the rate found in cultures growing normally in supplemented media. Studies by DNA–RNA hybridization and by other methods showed that, during a period of amino acid withdrawal, not more than 60–70% of the labelled RNA formed in RCstr mutants had the characteristics of mRNA. Evidence was obtained for some degradation of newly formed 16S and 23S rRNA species to heterogeneous material of lower molecular weight. This led to overestimations of the mRNA content of rapidly labelled RNA from such methods as simple examination of sucrose-density-gradient profiles. In RCrel strains the absolute and relative rates of synthesis of the various RNA fractions were not greatly affected. However, the stability of about half of the mRNA fraction was increased in RCrel strains during amino acid starvation, giving kinetics of mRNA labelling and turnover that were identical with those found in either RCstr or RCrel strains inhibited by high concentrations of chloramphenicol. Coincidence hybridization techniques showed that the mRNA content of amino acid-starved RCstr auxotrophs was unchanged from that found in normally growing cells. In contrast, RCrel strains deprived of amino acids increased their mRNA content about threefold. In such cultures the mRNA content of accumulating newly formed RNA was a constant 16% by wt.

This content is only available as a PDF.
You do not currently have access to this content.