A neutral-detergent-solubilized-enzyme preparation derived from Phaseolus aureus hypocotyls contains two types of glycosyltransferase activity. One, mannosyltransferase enzyme activity, utilizes GDP-α-d-mannose as the sugar nucleotide substrate. The other, glucosyltransferase enzyme activity, utilizes GDP-α-d-glucose as the sugar nucleotide substrate. The soluble enzyme preparation catalyses the formation of what appears to be a homopolysaccharide when either sugar nucleotide is the only substrate present. A β-(1→4)-linked mannan is the only polymeric product when only GDP-α-d-mannose is added. A β-(1→4)-linked glucan is the only polymeric product when only GDP-α-d-glucose is added. In the presence of both sugar nucleotides, however, a β-(1→4)-linked glucomannan is formed. There are indications that endogenous sugar donors may be present in the enzyme preparation. There appear to be only two glycosyltransferases in the enzyme preparation, each catalysing the transfer of a different sugar to the same type of acceptor molecule. The glucosyltransferase requires the continual production of mannose-containing acceptor molecules for maintenance of enzyme activity, and is thereby dependent upon the activity of the mannosyltransferase. The mannosyltransferase, on the other hand, does not require the continual production of glucose-containing acceptors for maintenance of enzyme activity, but is severely inhibited by GDP-α-P-glucose. These properties promote the synthesis of β-(1→4)-linked glucomannan rather than β-(1→4)-linked glucan plus β-(1→4)-linked mannan when both sugar nucleotide substrates are present.

This content is only available as a PDF.
You do not currently have access to this content.