The structural requirements for binding to the glucose/sorbose-transport system in the human erythrocyte were explored by measuring the inhibition constants, Ki, for specifically substituted analogues of d-glucose when l-sorbose was the penetrating sugar. Derivatives in which a hydroxyl group in the d-gluco configuration was inverted, or replaced by a hydrogen atom, at C-1, C-2, C-3, C-4 or C-6 of the d-glucose molecule, all bound to the carrier, confirming that no single hydroxyl group is essential for binding to the carrier. The binding and transport of 1-deoxy-d-glucose confirmed that the sugars bind in the pyranose form. The relative inhibition constants of d-glucose and its deoxy, epimeric and fluorinated analogues are consistent with the combination of β-d-glucopyranose with the carrier by hydrogen bonds at C-1, C-3, probably C-4, and possibly C-6 of the sugar. Both polar and non-polar substituents at C-6 enhance the affinity of d-glucose derivatives relative to d-xylose, and d-galactose derivatives relative to l-arabinose, and it is suggested that the carrier region around C-6 of the sugar may contain both hydrophobic and polar binding groups. The spatial requirements at C-1, C-2, C-3, C-4 and C-6 were explored by comparing the relative binding of d-glucose and its halogeno and O-alkyl substituents. The carrier protein closely approaches the sugar except at C-3 in the d-gluco configuration, C-4 and C-6. d-Glucal was a good inhibitor, showing that a strict chair form is not essential for binding. 3-O-(2′,3′-Epoxypropyl)-d-glucose, a potential substrate-directed alkylating agent, bound to the carrier, but did not inactivate it.
Article navigation
Article Contents
Research Article|
February 01 1973
Structural requirements for binding to the sugar-transport system of the human erythrocyte
J. E. G. Barnett
;
J. E. G. Barnett
1
Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 5NH, U.K.
Search for other works by this author on:
G. D. Holman
;
G. D. Holman
1
Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 5NH, U.K.
Search for other works by this author on:
K. A. Munday
K. A. Munday
1
Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 5NH, U.K.
Search for other works by this author on:
Biochem J (1973) 131 (2): 211-221.
Citation
J. E. G. Barnett, G. D. Holman, K. A. Munday; Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J 1 February 1973; 131 (2): 211–221. doi: https://doi.org/10.1042/bj1310211
Download citation file:
Close
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionCited By
Related Articles
Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune
Biochem J (June, 2001)
Biosynthesis of 2-acetamido-2,6-dideoxy-l-hexoses in bacteria follows a pattern distinct from those of the pathways of 6-deoxy-l-hexoses
Biochem J (May, 2003)
Epoxyalkyl glycosides of d-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10
Biochem J (April, 2000)
Active-site-directed inhibition of asparagine N -glycosyltransferases with epoxy-peptide derivatives
Biochem J (February, 1983)