1. Measurements were made of the activities of the four key enzymes involved in gluconeogenesis, pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.32), fructose 1,6-diphosphatase (EC 3.1.3.11) and glucose 6-phosphatase (EC 3.1.3.9), of serine dehydratase (EC 4.2.1.13) and of the four enzymes unique to glycolysis, glucokinase (EC 2.7.1.2), hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40), in livers from starved rats perfused with glucose, fructose or lactate. Changes in perfusate concentrations of glucose, fructose, lactate, pyruvate, urea and amino acid were monitored for each perfusion. 2. Addition of 15mm-glucose at the start of perfusion decreased the activity of pyruvate carboxylase. Constant infusion of glucose to maintain the concentration also decreased the activities of phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and serine dehydratase. Addition of 2.2mm-glucose initially to give a perfusate sugar concentration similar to the blood sugar concentration of starved animals had no effect on the activities of the enzymes compared with zero-time controls. 3. Addition of 15mm-fructose initially decreased glucokinase activity. Constant infusion of fructose decreased activities of glucokinase, phosphofructokinase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, glucose 6-phosphatase and serine dehydratase. 4. Addition of 7mm-lactate initially elevated the activity of pyruvate carboxylase, as also did constant infusion; maintenance of a perfusate lactate concentration of 18mm induced both pyruvate carboxylase and phosphoenolpyruvate carboxylase activities. 5. Addition of cycloheximide had no effect on the activities of the enzymes after 4h of perfusion at either low or high concentrations of glucose or at high lactate concentration. Cycloheximide also prevented the loss or induction of pyruvate carboxylase and phosphoenolpyruvate carboxylase activities with high substrate concentrations. 6. Significant amounts of glycogen were deposited in all perfusions, except for those containing cycloheximide at the lowest glucose concentration. Lipid was found to increase only in the experiments with high fructose concentrations. 7. Perfusion with either fructose or glucose decreased the rates of ureogenesis; addition of cycloheximide increased urea efflux from the liver.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
May 1973
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
May 15 1973
Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate
Janet M. Wimhurst;
Janet M. Wimhurst
1Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, U.K.
Search for other works by this author on:
K. L. Manchester
K. L. Manchester
1Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, U.K.
Search for other works by this author on:
Publisher: Portland Press Ltd
© 1973 London: The Biochemical Society
1973
Biochem J (1973) 134 (1): 143–156.
Citation
Janet M. Wimhurst, K. L. Manchester; Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate. Biochem J 15 May 1973; 134 (1): 143–156. doi: https://doi.org/10.1042/bj1340143
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |