1. The reactions of 2,2′- and 4,4′-dipyridyl disulphide (2-Py–S–S–2-Py and 4-Py–S–S–4-Py) with l-ergothioneine (2-mercapto-l-histidine betaine), 2-mercaptoimidazole, 1-methyl-2-mercaptoimidazole, thiourea, thioacetamide, 2-thiopyridone (Py–2-SH) and 4-thiopyridone (Py–4-SH) were investigated spectrophotometrically in the pH range approx. 1–9. 2. These reactions involve two sequential reversible thiol–disulphide interchanges. 3. The reaction of l-ergothioneine with 2-Py–S–S–2-Py and/or with the l-ergothioneine–Py–2-SH mixed disulphide, both of which provide Py–2-SH, is characterized by at least three reactive protonic states. This provides definitive evidence that neutral l-ergothioneine is a reactive nucleophile, particularly towards the highly electrophilic protonated disulphides. 4. A similar situation appears to obtain in the reactions of l-ergothioneine and Py–2-SH with 4-Py–S–S–4-Py and in the reactions of the other 2-mercaptoimidazoles, thiourea and Py–4-SH with 2-Py–S–S–2-Py. The nucleophilic reactivity of Py–4-SH suggests that general base catalysis provided by the disulphide in a cyclic or quasi-cyclic transition state is not necessary to generate nucleophilic reactivity in the other amino-thiones whose geometry could permit such catalysis. 5. The existence of a positive deuterium isotope effect in the l-ergothioneine–2-Py–S–S–2-Py system at pH6–7 provides no evidence for general base catalysis but is in accord with a mechanism involving specific acid catalysis and post-transition-state proton transfer. 6. The pH-dependences of the overall equilibrium positions of the various thiol–disulphide interchanges are described. 7. Reaction of thioacetamide with a stoicheiometric quantity of 2-Py–S–S–2-Py at pH1 provides 2 molecules of Py–2-SH per molecule of thioacetamide and elemental sulphur; these findings can be accounted for by thiol–disulphide interchange to provide a thioacetamide–Py–2-SH mixed disulphide followed by fragmentation to provide CH3CN, S and Py–2-SH. 8. Provision of high reactivity in the neutral forms of the members of this series of sulphur nucleophiles by electron donation by the amino group is compared with the well known α effect that provides enhanced nucleophilicity in compounds containing an electronegative atom adjacent to the nucleophilic atom. 9. The decrease in the u.v. absorption of l-ergothioneine at 257nm consequent on transformation of its aminothione moiety into an S-alkyl-2-mercaptoimidazole moiety provides a convenient method of following the alkylation of l-ergothioneine by iodoacetamide. 10. The pH dependence of the extinction coefficient of l-ergothioneine at 257nm is described by ε257={8×103/(1+Ka/[H+]} +6×103m−1·cm−1 in which pKa=10.8. 11. In the pH range 3–11 the reaction is characterized by two reactive protonic states (X and XH). 12. The X state, reaction of the ionized 2-mercaptoimidazole moiety of the l-ergothioneine dianion with neutral iodoacetamide, is characterized by the second-order rate constant 4.0m−1·s−1 (25.0°C, I=0.05). The XH state, characterized by the second-order rate constant 0.03m−1·s−1, is interpreted as reaction of the thione form of the neutral 2-mercaptoimidazole moiety of the l-ergothioneine monoanion with neutral iodoacetamide. 13. The XH state of the alkylation reaction does not exhibit a deuterium isotope effect.

This content is only available as a PDF.
You do not currently have access to this content.