Treatment of immature mice with both follicle-stimulating hormone and human chorionic gonadotrophin in vivo resulted in large increases in the specific activities of ovarian alkaline phosphatase and alkaline nucleotidase. The specific activities of other ovarian enzymes studied were not altered by gonadotrophin treatment. A simultaneous change in the Michaelis constant of ovarian alkaline phosphatase accompanied the increase in specific activity. These changes commenced 6–8h after injection of human chorionic gonadotrophin plus follicle-stimulating hormone. Injection of human chorionic gonadotrophin induced the change in Michaelis constant and increased ovarian alkaline phosphatase activity. Treatment with follicle-stimulating hormone had no effect on ovarian alkaline phosphatase. However, follicle-stimulating hormone synergistically augmented the response to human chorionic gonadotrophin. A latent period of about 24h elapsed before this augmentation was expressed. Augmentation of ovarian alkaline phosphatase was directly related to the dose of follicle-stimulating hormone at a fixed dose of chorionic gonadotrophin. No response of ovarian alkaline phosphatase was observed after treatment of immature mice in vivo with oestrogens, progesterone, growth hormone or prolactin. Unlike chorionic gonadotrophin, sheep luteinizing hormone over a wide dose range induced no response within 24h. However, a response in ovarian alkaline phosphatase was observed when sheep luteinizing hormone was administered in combination with follicle-stimulating hormone. The specific activity and Km of ovarian alkaline phosphatase increased during normal maturation. The Michaelis constant ceased to increase as sexual maturity was reached. The changes in alkaline phosphatase activity were of a similar magnitude to those induced by gonadotrophin treatment. It is concluded that the changes induced acutely by treatment in vivo with unphysiological doses of gonadotrophins occur in the maturing mouse under the influence of endogenous, homologous gonadotrophins at physiological concentrations.

This content is only available as a PDF.
You do not currently have access to this content.