1. β-Phenylpropionylthiocholine and N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide (dansylcadaverine) serve as a pair of water-soluble (pH7.5) model substrates for transamidating enzymes. Amide formation could be followed directly through fluorescence measurements by monitoring the continuous extraction of the water-soluble coupling product, N-(β-phenylpropionyl)dansylcadaverine, into n-heptane. By this procedure, the steady-state kinetics of glutamine-lysine endo-γ-glutamyltransferase from human plasma (fibrinoligase, thrombin- and Ca2+-activated blood coagulation Factor XII) and from guinea-pig liver (liver transglutaminase) were investigated at 25 degrees C. 2. With β-phenylpropionylthiocholine as the varied substrate, Lineweaver-Burk plots with various concentrations of dansylcadaverine intercept on the horizontal axis, suggesting that formation of the acyl-enzyme is rate limiting. 3. On the basis of functional normality of active sites, kcat. values of 1.8 s(-1) and 0.9 s(-1) were obtained for the plasma and liver γ-glutamyltransferase respectively. The two enzymes show identical affinities for the first substrate, β-phenylpropionylthiocholine, with Ka 4 times 10(-4) M. 4. Utilization of the second substrate, dansylcadaverine, appears to be an order of magnitude more efficient with the liver enzyme. 5. N-(5-Amino-3-thiapentyl)-5-dimethylaminonaphthalene-1-sulphonamide (dansylthiacadaverine) could be used instead of dansylcadaverine in the fluorescent kinetic system. 6. Competitive inhibition by a non-fluorescent amine substrate histamine was also evaluated.

This content is only available as a PDF.
You do not currently have access to this content.