It was shown that non-penetrating solutes at high concentrations inhibit the respiration of the halotolerant bacterium Ba1. Betaine relieved the inhibition caused by osmotic stress and exhibited in this respect a considerable structural specificity. The rate of oxidation of various substrates was stimulated to different extents. It stimulated the rates of both respiration and growth to a similar extent, leaving the energy yield essentially unchanged. In cells pre-loaded with labelled glutamate, betaine also stimulated the rate of oxidation of this intracellular substrate. Betaine was accumulated by respiring cells, and the maximum amount taken up was correlated with the osmolarity of the medium. As judged by chromatography, accumulated intracellular betaine underwent no chemical modification, and this accumulated betaine could not be exchanged with the betaine in the medium or released by passive efflux when respiration was inhibited. Intracellular betaine caused no stimulation of respiration, whereas betaine added to the medium increased the respiratory rate to the same extent in cells pre-loaded with betaine as that in the nonloaded cells. The above observations suggest that iso-economic adjustment is not involved in the anti-osmotic effect of betaine, and that betaine exerts its action on the cellular membrane from the outside.

This content is only available as a PDF.
You do not currently have access to this content.