Poly(adenylic acid) polymerase was extracted from liver nuclei and mitochondria of rats either fed ad libitum, starved overnight or starved and then re-fed with a complete amino acid mixture for 1-3 h. The enzymes were partially purified and assayed by using exogenous primers. Starvation resulted in an 80% decrease in the total activity of the purified nuclear enzyme, and the mitochondrial enzyme activity diminished to almost zero after overnight starvation. Measurements of the protein content of whole nuclei or mitochondria and of the enzyme extracts from these organelles indicated that the decrease in enzyme activity on starvation was not caused by incomplete extraction of the enzyme from the starved animals. Re-feeding the animals with the complete amino acid mixture increased the total activity of poly(A) polymerase from the nuclei and mitochondria by 1.9-fold and 63-fold respectively. Under these conditions, the total protein content of the nuclei and mitochondria increased by only 13 and 32% respectively. These data indicate that poly(A) polymerase is one of the cellular proteins specifically regulated by amino acid supply.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
August 1976
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
August 15 1976
Response of poly(adenylic acid) polymerase in rat liver nuclei and mitochondria to starvation and re-feeding with amino acids Available to Purchase
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1976 London: The Biochemical Society
1976
Biochem J (1976) 158 (2): 161–167.
Citation
S T Jacob, K M Rose, H N Munro; Response of poly(adenylic acid) polymerase in rat liver nuclei and mitochondria to starvation and re-feeding with amino acids. Biochem J 15 August 1976; 158 (2): 161–167. doi: https://doi.org/10.1042/bj1580161
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |