1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
August 1976
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
August 15 1976
Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise Available to Purchase
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1976 London: The Biochemical Society
1976
Biochem J (1976) 158 (2): 203–210.
Citation
S A Hagg, S I Taylor, N B Ruberman; Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise. Biochem J 15 August 1976; 158 (2): 203–210. doi: https://doi.org/10.1042/bj1580203
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |