The conformational motility of beta-lactamase I from Bacillus cereus was studied by hydrogen exhange. The time course of the isotopic replacement of peptide hydrogen atoms was followed by ‘exchange-in’ or ‘exchange-out’ experiments. Many of the substrates for this enzyme that have o-substituted aromatic or heterocyclic side chains (e.g. methicillin or cloxacillin) are known to effect a decrease in enzymic activity (‘substrate-induced deactivation’). There was a marked discontinuity in the exchange-out curve when methicillin or cloxacillin was diffused into the enzyme solution. About one-half of the hydrogen atoms that were probed were affected by the presence of these substrates, and the change in the reactivity of the hydrogen atoms was also large. Substrates that do not bring about deactivation (benzylpenicillin and cephalosporin C) do not affect the hydrogen exchange, nor do reversible competitive inhibitors such as the penicilloic acid or penilloic acid. On the other hand, Zn2+ ions do affect the hydrogen exchange; their effect is similar to that of methicillin or cloxacillin.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
August 1977
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
August 01 1977
Substrate-induced deactivation of penicillinases. Studies of β-lactamase I by hydrogen exchange
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1977 London: The Biochemical Society
1977
Biochem J (1977) 165 (2): 279–285.
Citation
P A Kiener, S G Waley; Substrate-induced deactivation of penicillinases. Studies of β-lactamase I by hydrogen exchange. Biochem J 1 August 1977; 165 (2): 279–285. doi: https://doi.org/10.1042/bj1650279
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |