1. State-3 (i.e. ADP-stimulated) rates of O2 uptake with palmitoylcarnitine, palmitoyl-CoA plus carnitine, pyruvate plus malonate plus carnitine and octanoate as respiratory substrate were all diminished in heart mitochondria isolated from senescent (24-month-old) rats compared with mitochondria from young adults (6 months old). By contrast, State-3 rates of O2 uptake with pyruvate plus malate or glutamate plus malate were the same for mitochondria from each age group. 2. Measurements of enzyme activities in disrupted mitochondria showed a decline with senescence in the activity of acyl-CoA synthetase (EC and, carnitine acetyltransferase (EC and 3-hydroxy-acyl-CoA dehydrogenase (EC, but no change in the activity of carnitine palmitoyltransferase (EC or acyl-CoA dehydrogenase (EC 3. Measurement of dl-[3H]carnitine (in)/acetyl-l-carnitine (out) exchange in intact mitochondria showed decreased rates when the animals used were senescent. However, this followed from a decreased intramitochondrial pool of exchangeable carnitine, such that calculated first-order rate constants for exchange were identical in mitochondria from the two age groups. 4. The decline in acyl-CoA synthetase activity is thought to be the reason for the diminished rate of O2 uptake with octanoate in senescence. The decline in carnitine acetyltransferase activity is considered to be the cause of the diminished rate of O2 uptake with acetylcarnitine or with pyruvate plus malonate plus carnitine as substrate. The mechanism of the diminished rate of O2 uptake with palmitoylcarnitine in senescence is discussed.

This content is only available as a PDF.
You do not currently have access to this content.