1. The effects of atractyloside and carboxyatractyloside (between 5 and 40μm) on O2 uptake, glucose synthesis, urea synthesis, the adenine nucleotide content and the intracellular K+ concentration were measured in isolated hepatocytes. 2. Urea synthesis was much less inhibited than glucose synthesis by both atractylosides. Measurements of intermediary metabolites of carbohydrate metabolism in freeze-clamped liver after injection of atractyloside into rats indicate that inhibition of gluconeogenesis is due to interference at the cytosolic reactions requiring ATP (phosphoenolpyruvate carboxykinase and 3-phosphoglycerate kinase). 3. The decrease in [ATP]/[ADP]×[Pi] after addition of atractyloside or carboxyatractyloside was restricted to the cytosol. 4. Dihydroxyacetone can be converted either into glucose with the consumption of 2mol of ATP (per mol of glucose) or into lactate with the production of 2mol of ATP. In the presence of high concentrations of atractyloside and carboxyatractyloside more ATP was produced than was used for the synthesis of glucose from dihydroxyacetone, probably for the maintenance of intracellular [K+]. 5. When the rates of respiration were altered by changing substrates, the degrees of inhibition of respiration and translocation by a given concentration of the atractylosides were the same, whereas at a given concentration of HCN the degree of inhibition was high at higher initial rates, and low at lower initial rates. 6. Inhibition of a complex series of reactions by atractyloside does not necessarily indicate that the translocator is a rate-limiting step in that sequence as Th. P. M. Akerboom, H. Bookelman & J. M. Tager [(1977) FEBS. Lett.74, 50–54] assume. This point is discussed.

This content is only available as a PDF.
You do not currently have access to this content.