The oxidation of ferrihaems by H2O2 was studied as a model for haem catabolism. Rates of ferrihaem oxidation were evaluated by using a new computer-based method that measures the loss in catalytic activity of the ferrihaem during oxidation. For protoferrihaem, deuteroferrihaem, coproferrihaem and mesoferrihaem, oxidation proceeded via the monomeric species and no dimer contribution was detectable. The pH-dependence of oxidation was studied in the range 6.5–11. Within experimental error, the data were compatible with an inverse linear dependence on [H+]. This was interpreted in terms of attack by HO2- on monomeric ferrihaem. The specific second-order rate constants for oxidation of monomeric species by HO2- were of the same order of magnitude for all the ferrihaems, and were in the sequence coproferrihaem greater than protoferrihaem greater than mesoferrihaem congruent to deuteroferrihaem. A model is suggested involving formation of a ferrihaem monomerperoxide complex, which may either dissociate with the formation of a peroxidatic intermediate or be involved in an intramolecular oxidation of the ferrihaem. Haem catabolism may occur via the same or a similar intermediate.

This content is only available as a PDF.
You do not currently have access to this content.