To learn more about the enzymes involved in protein catabolism in skeletal and cardiac muscle and to identify selective inhibitors of this process, we studied the effects of proteinase inhibitors on protein turnover in isolated muscles and on proteolytic activities in muscle homogenates. Chymostatin (20μm) decreased protein breakdown by 20–40% in leg muscles from normal rodents and also in denervated and dystrophic muscles. These results are similar to our previous findings with leupeptin. The related inhibitors pepstatin, bestatin, and elastatinal did not decrease protein breakdown; antipain slowed this process in rat hind-limb muscles but not in diaphragm. Chymostatin did not decrease protein synthesis and thus probably retards proteolysis by a specific effect on cell proteinase(s). In homogenates of rat muscle, chymostatin, in common with leupeptin and antipain, inhibits the lysosomal proteinase cathepsin B, and the soluble Ca2+-activated proteinase. In addition, chymostatin, but not leupeptin, inhibits the chymotrypsin-like proteinase apparent in muscle homogenates. In muscles depleted of most of this activity by treatment with the mast-cell-degranulating agent 48/80, chymostatin still decreased protein breakdown. Therefore inhibition of this alkaline activity probably does not account for the decrease in protein breakdown. These results are consistent with a lysosomal site of action for chymostatin. Because of its lack of toxicity, chymostatin may be useful in maintaining tissues in vitro and perhaps in decreasing muscle atrophy in vivo.

This content is only available as a PDF.
You do not currently have access to this content.