Several measures of energy conservation, namely ADP/O ratio, P/O ratio, ATP/O ratio and phosphorylation detected by continuous assay with purified firefly luciferase and luciferin, all show phosphorylation can occur with mung-bean mitochondria at cyanide concentrations sufficient to inhibit the cytochrome oxidase system. Phosphorylation in the presence of cyanide is uncoupler- oligomycin- and salicylhydroxamate-sensitive. The participation of phosphorylation site 1 is excluded, phosphorylation being attributable to a single phosphorylation site associated with the cyanide-insensitive oxidase. The cyanide-insensitive oxidase has also been shown to support a variety of other energy-linked functions, namely, Ca2+ uptake, reversed electron transport and the maintenance of a membrane potential detected by the dye probes 8-anilinonaphthalene-1-sulphonate and safranine. High concentrations of cyanide have uncoupler-like activity, decreasing the ADP/O ratio and the t 1/2 for the decay of a pH pulse through the the mitochondrial membrane. This uncoupler-like effect is most marked with aged mitochondria. The observations of energy conservation attributable to the cyanide-insensitive oxidase are compared with other reports where it is concluded that the alternative oxidase is uncoupled.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
August 1980
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
August 15 1980
Energy conservation by the plant mitochondrial cyanide-insensitive oxidase. Some additional evidence Available to Purchase
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1980 London: The Biochemical Society
1980
Biochem J (1980) 190 (2): 349–360.
Citation
S B Wilson; Energy conservation by the plant mitochondrial cyanide-insensitive oxidase. Some additional evidence. Biochem J 15 August 1980; 190 (2): 349–360. doi: https://doi.org/10.1042/bj1900349
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |