Submitochondrial particles from bovine heart in which NADH dehydrogenase is reduced by either addition of NADH and rotenone or by reversed electron transfer generate 0.9 +/- 0.1 nmol of O2-/min per mg of protein at pH 7.4 and at 30 degrees C. When NADH is used as substrate, rotenone, antimycin and cyanide increase O2- production. In NADH- and antimycin-supplemented submitochondrial particles, rotenone has a biphasic effect: it increases O2- production at the NADH dehydrogenase and it inhibits O2- production at the ubiquinone-cytochrome b site. The generation of O2- by the rotenone, the uncoupler carbonyl cyanide rho-trifluoromethoxyphenylhydrazone and oligomycin at concentrations similar to those required to inhibit energy-dependent succinate-NAD reductase. Cyanide did not affect O2- generation at the NADH dehydrogenase, but inhibited O2- production at the ubiquinone-cytochrome b site. Production of O2- at the NADH dehydrogenase is about 50% of the O2- generation but the ubiquinone-cytochrome b area at pH 7.4. Additivity of the two mitochondrial sites of O2- generation was observed over the pH range from 7.0 to 8.8. AN O2–dependent autocatalytic process that requires NADH, submitochondrial particles and adrenaline is described.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
November 1980
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
November 01 1980
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1980 London: The Biochemical Society
1980
Biochem J (1980) 191 (2): 421–427.
Citation
J F Turrens, A Boveris; Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1 November 1980; 191 (2): 421–427. doi: https://doi.org/10.1042/bj1910421
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |