Tumour Leydig cells have been incubated in the presence or absence of lutropin (luteinizing hormone, ‘LH’). Stimulation of cells with lutropin (1000ng/ml) in the presence of 1-methyl-3-isobutylxanthine (0.25mm) resulted in increased steroid production and increased protein phosphorylation. When pregnenolone metabolism was inhibited, basal pregnenolone production was 26.9±7.4ng/60min per 106 cells; stimulated production was 156.1±39.5ng/60min per 106 cells (means±s.d., n=4). Lutropin-dependent phosphorylated proteins of molecular mass 17000, 22000, 24000, 33000 and 57000Da were detected. A significant increase of [32P]Pi incorporation into these phosphorylated proteins was observed concomitant with the increased pregnenolone production. The occurrence of the phosphoproteins in nuclei, mitochondria and postmitochondrial-supernatant was investigated. The 17000Da phosphoprotein was found in the nuclear fraction, whereas the 22000, 24000, 33000 and 57000Da phosphoproteins were localized in the postmitochondrial-supernatant fraction. Of the cholesterol-side-chain-cleavage activity, 80.3±6.1% (mean±s.d., n=5) was present in the mitochondrial fraction isolated from tumour Leydig cells, and this activity was 2.5-fold increased when cells had been preincubated with lutropin/1-methyl-3-isobutylxanthine (basal production: 194.6±28.6ng/30min per mg of protein; lutropinstimulated production: 498.8±91.5ng/30min per mg of protein; means±s.d., n=3). The similarities in the kinetics of the phosphorylation of proteins and the pregnenolone production after addition of lutropin/1-methyl-3-isobutylxanthine indicate that the phosphoproteins could be involved in the lutropin-dependent increase in steroidogenesis in tumour Leydig cells. It remains to be demonstrated, however, to what extent the phosphoproteins outside the mitochondria can influence the cholesterol-side-chain-cleavage activity inside the mitochondria.

This content is only available as a PDF.
You do not currently have access to this content.