Isolated intact rabbit muscles were incubated in a medium containing radioactive proline. The rates of synthesis of collagen and total muscle protein after incubation with a constant tension or intermittent mechanical stretching were compared with the rates in vivo. Muscles incubated under a constant tension synthesized protein at 22% of the rate observed in vivo; intermittent mechanical stretching resulted in an increase of 73% in the rate of protein synthesis, to 38% of that found in vivo. Collagen synthesis was affected in the same way as total protein synthesis by both types of incubation, therefore the relative rates of collagen and total protein synthesis were unchanged. ATP concentration in the isolate muscles and the uptake of glucose from the medium were increased by intermittent mechanical stretching. Incubating the muscles with a gas phase containing 5% O2 decreased the rate of protein synthesis, abolished the effect of intermittent mechanical stretching, lowered the concentration of ATP and increased the lactate concentration. The rate of protein synthesis in muscles maintained with a constant or intermittently applied tension was not affected by a previous period of incubation with the other type of stimulus.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
September 1981
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
September 15 1981
The effect of intermittent changes in tension on protein and collagen synthesis in isolated rabbit muscles
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1981 London: The Biochemical Society
1981
Biochem J (1981) 198 (3): 491–498.
Citation
R M Palmer, P J Reeds, G E Lobley, R H Smith; The effect of intermittent changes in tension on protein and collagen synthesis in isolated rabbit muscles. Biochem J 15 September 1981; 198 (3): 491–498. doi: https://doi.org/10.1042/bj1980491
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
View past webinars > |