1. The reduction of mitochondrial NAD(P) by 2-oxoglutarate was monitored as a measure of 2-oxoglutarate dehydrogenase activity in its intramitochondrial locale. In the absence of ADP, steady-state reduction of NAD(P) by 0.5 mM-2-oxoglutarate in the presence of 0.5 mM-L-malate was markedly increased by extramitochondrial Ca2+, with 50% activation at pCa 6.58, when the Na+ concentration was 10 mM, the Pi concentration ws 5 mM and the added Mg2+ concentration was 1 mM. Omission of Pi resulted in 50% activation at pCa 6.77; omission of Mg2+ resulted in 50% activation at pCA greater than or equal to 7.3. 2. The activation of 2-oxoglutarate dehydrogenase could be reversed on addition of an excess of EGTA. The rate of inactivation was dependent on the concentration of Na+, with K0.5 2.5 mM, which is consistent with the rate of withdrawal of Ca2+ from the mitochondria being the limiting factor. 3. The steady-state reduction of cytochrome c by 2-oxoglutarate (0.5 mM) also showed a marked dependence on pCa in the absence of ADP; in the presence of an excess of ADP, no such effect of Ca2+ was detectable. 4. Mitochondria from the hearts of senescent rats showed an undiminished rate of dehydrogenase activation by Ca2+ but a rate of inactivation by excess EGTA that was diminished by 40%. Direct studies of Ca2+ egress with Arsenazo III confirmed a decrement in rate with old age. 5. Studies of 2-oxoglutarate dehydrogenase activity as a function of the mitochondrial context of Ca2+, as measured by atomic-absorption spectrophotometry, showed half-maximal activation at a mitochondrial content of 1.0 nmol of Ca2+/mg of protein, and saturation at 3 nmol/mg. 6. These findings support the model advanced by Denton, Richards & Chin [(1978) Biochem. J. 176, 899-906], of a control of the tricarboxylate cycle by intramitochondrial Ca2+, and demonstrate the range of mitochondrial Ca2+ content over which this may occur. In addition, they raise the possibility of a disturbance of this control mechanism in old age.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
September 1981
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
September 15 1981
Effect of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1981 London: The Biochemical Society
1981
Biochem J (1981) 198 (3): 525–533.
Citation
R G Hansford, F Castro; Effect of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate. Biochem J 15 September 1981; 198 (3): 525–533. doi: https://doi.org/10.1042/bj1980525
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
View past webinars > |