The peripheral cycle AMP phosphodiesterase from rat liver plasma membranes binds with high affinity (2.4 nM) to a single class of receptor sites on the liver plasma membrane. These receptor sites appear to be proteins, as they are trypsin- and heat-labile. The sensitivity of these sites to denaturation by trypsin and heat is a first-order process. The presence of Ca2+ (5 mM) increases the affinity of these sites for the enzyme, but does not alter their total number. The receptor sites and the cyclic AMP phosphodiesterase occur in similar numbers, at around 2 pmol/mg of plasma-membrane protein. It is proposed that the peripheral, liver plasma-membrane cyclic AMP phosphodiesterase is attached to a specific site on the insulin receptor and that the binding of insulin to the receptor site triggers a conformational change in the enzyme such that the enzyme can be phosphorylated and activated by an endogenous cyclic AMP-dependent protein kinase.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
September 1981
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
September 15 1981
The insulin-stimulated cyclic AMP phosphodiesterase binds to a single class of protein sites on the liver plasma membrane
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1981 London: The Biochemical Society
1981
Biochem J (1981) 198 (3): 703–706.
Citation
M D Houslay, R J Marchmont; The insulin-stimulated cyclic AMP phosphodiesterase binds to a single class of protein sites on the liver plasma membrane. Biochem J 15 September 1981; 198 (3): 703–706. doi: https://doi.org/10.1042/bj1980703
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
View past webinars > |