The secretion of heparan sulphate by cultured rat hepatocytes was increased in the presence of (+)-catechin. The increase was due to a new species of heparan sulphate that lacked the carbohydrate-protein linkage between xylose and serine in normal heparan sulphate proteoglycan. The mean molecular weight of this heparan sulphate varied between 6300 and 9500, was not affected by treatment with alkali or Pronase and was 2-3-fold lower than that of chains released from heparan sulphate proteoglycan. After digestion with Pronase, only a minor fraction of chains contained serine, and after treatment with alkali and NaB3H4 reduction less than 5% of the chains exposed [3H]xylitol at the reducing terminals. These results suggested that (+)-catechin or metabolites of it acted as acceptors of heparan sulphate synthesis. In cultures treated wih cycloheximide, synthesis of heparan sulphate decreased to less than 5%. (+)-Catechin could restore the heparan sulphate synthesis to almost normal values. The (+)-catechin-induced heparan sulphate was secreted. Only a small fraction was incorporated into the plasma membrane or other cellular compartments. This may indicate that the protein core is essential for association of heparan sulphate with cellular compartments.

This content is only available as a PDF.
You do not currently have access to this content.