1. Studies on the cytochrome spectra of liver mitochondria from control and glucagon-treated rats in State 4, State 3 and in the presence of uncoupler are reported. 2. The stimulation of electron flow between cytochromes c1 and c observed previously [Halestrap (1978) Biochem. J. 172, 399-405] was shown to be an artefact of Ca2+-induced swelling of mitochondria. 3. When precautions were taken to prevent such swelling, glucagon treatment was shown to enhance the reduction of cytochromes c, c1 and b558 in both State 3 and uncoupled conditions with either succinate or glutamate + malate as substrate. An increase in the reduction of cytochromes b562 and b566 was also seen in some, but not all, experiments. 4. In State 4 with succinate but not glutamate + malate as substrate, cytochromes c, c1, b558, b562 and b566 showed increased reduction. 5. Glucagon stimulated oxidation of duroquinol and palmitoylcarnitine by intact mitochondria and of NADH by disrupted mitochondria. 6. No effect of glucagon on succinate dehydrogenase activity or the temperature-dependence of succinate oxidation could be detected. 7. Glucagon enhanced the inhibition of the respiratory chain by colletotrichin, but not antimycin or 8-heptyl-4-hydroxyquinoline N-oxide. 8. These results are interpreted in terms of a primary stimulation by glucagon of the ‘Q cycle’ [Mitchell (1976) J. Theor. Biol. 62, 827-367] within Complex III (ubiquinol:cytochrome c oxidoreductase) and a secondary site of action involving stimulation of electron flow into Complex III from the ubiquinone pool. 9. Ageing of mitochondria, hyperosmotic treatment or addition of 20 mM-benzyl alcohol opposed the effects of glucagon treatment on cytochrome spectra and colletotrichin inhibition of respiration. 10. These results support the hypothesis that glucagon exerts its effects on the mitochondria by perturbing the membrane structure.

This content is only available as a PDF.
You do not currently have access to this content.