Oleoylanilide was administered orally to groups of rats according to different patterns. Subcellular fractionation of liver, lung and adipose tissue was then carried out in order to study the main enzyme activities involved in the lipogenesis. The observed findings indicate that adipose tissue and lung are the main target organs for the anilide, adipose tissue being involved in a general decrease of the enzyme activities, whereas transacylation reaction exhibits the most marked depletion of all the enzyme activities in the lung. The enzyme activities in liver were not markedly affected by this oral administration, although some data support the existence of a latent liver toxicity. These data suggest that oleoylanilide has the capacity to alter lipid metabolism of lung and adipose tissue to a considerable extent, whereas no major effect was produced in the liver. This different organ response could be related to the lymphatic gland via absorption of the substance.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
May 1983
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
May 15 1983
Lipogenesis in liver, lung and adipose tissue of rats fed with oleoylanilide Available to Purchase
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1983 London: The Biochemical Society
1983
Biochem J (1983) 212 (2): 339–344.
Citation
C Casals, P Garcia-Barreno, A M Municio; Lipogenesis in liver, lung and adipose tissue of rats fed with oleoylanilide. Biochem J 15 May 1983; 212 (2): 339–344. doi: https://doi.org/10.1042/bj2120339
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |