Hen ovalbumin, the major secretory product of oviduct cells, is a 43 000-dalton glycoprotein. Many studies have led to controversy over the question of whether ovalbumin (OA) can be fully renatured after chemical denaturation. We have studied the renaturation of OA after denaturation with guanidinium chloride, urea or alkaline pH. Denatured OA displays an intrinsic viscosity consistent with nearly complete unfolding of the protein. Removal of the denaturant results in a complete reversal of the changes in intrinsic viscosity. However, closer examination of the renatured protein reveals major differences from the native form. Renatured OA (OAR) can be completely separated from the native form (OAN) by affinity chromatography on phenyl-Sepharose. OAR displays altered tryptophan fluorescence, u.v.-absorption and c.d. spectra. Only OAR binds anilinonaphthalenesulphonate (as measured by fluorescence enhancement). OAR, but not OAN, binds about 2 mol of the covalent hydrophobic affinity probe phenyl isothiocyanate/mol. Renaturation, and the production of OAR, occurs regardless of the oxidation state of the disulphide bonds, of phosphorylation of the protein, and of the presence or the absence of the single carbohydrate chain. OAR may be either monomeric or an irreversible aggregate. Which of these two states is formed depends on the protein concentration during renaturation. Monomeric and aggregated OAR can be distinguished on the basis of some spectroscopic characteristics, but they share the essential hydrophobic characteristics that distinguish them from OAN. OAN and OAR do not spontaneously interconvert. Antibodies raised to each can be made monospecific by immunoabsorption. Thus two stable forms of OA can be obtained, one of which, OAR, displays hydrophobic characteristics. OAN, but not OAR, is formed when OA is synthesized in vitro in a translation system.

This content is only available as a PDF.
You do not currently have access to this content.