The isolation of a new mutant Sm1 strain of yeast, Saccharomyces cerevisiae, is described: this strain was partially defective in haem formation and accumulated large amounts of Zn-porphyrins. Genetic analysis showed that the porphyrin accumulation was under the control of a single nuclear recessive mutation. Biochemical analysis showed that the main porphyrins accumulated in the cells were uroporphyrin and heptacarboxyporphyrin, mostly of the isomer-III type. The excreted porphyrins comprised mainly dehydroisocoproporphyrin. Analysis of uroporphyrinogen decarboxylase activity in the cell-free extract revealed a 70-80% decrease of activity in the mutant and showed that the relative rates of the different decarboxylation steps were modified with the mutant enzyme. A 2-3-fold increase in 5-aminolaevulinate synthase activity was measured in the mutant. The biochemical characteristics of the Sm1 mutant are very similar to those described for porphyria cutanea tarda.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
March 1984
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
March 01 1984
Modified uroporphyrinogen decarboxylase activity in a yeast mutant which mimics porphyria cutanea tarda
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1984 London: The Biochemical Society
1984
Biochem J (1984) 218 (2): 405–413.
Citation
J Rytka, T Bilinski, R Labbe-Bois; Modified uroporphyrinogen decarboxylase activity in a yeast mutant which mimics porphyria cutanea tarda. Biochem J 1 March 1984; 218 (2): 405–413. doi: https://doi.org/10.1042/bj2180405
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |