To characterize the effect of glucose on the intracellular pH (pHi) of pancreatic islet cells, we measured the accumulation of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione ([14C]DMO) in beta-cell-rich islets from ob/ob mice. D-Glucose (20 mM) stimulated insulin release and enhanced the [14C]DMO equilibrium uptake corresponding to an increase of pHi by about 0.15 unit. The glucose effect on DMO uptake was concentration-dependent, with half-maximal effect at about 4 mM-glucose and maximum effect at about 10 mM-glucose. It was inhibited by 20 mM-mannoheptulose and potentiated by 4 mM-L-5-hydroxytryptophan, but not affected by 2 mM-theophylline. Mannoheptulose is an inhibitor and L-5-hydroxytryptophan and theophylline are potentiators of glucose-stimulated insulin release. The glucose-induced increase in pHi appeared rapidly (7 min) and persisted for at least 30 min and it was observed both in bicarbonate/CO2-buffered and in Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid]-buffered media. Addition of extracellular bicarbonate buffer lowered the pHi, but did not affect basal insulin release, whereas 5 mM-NH4+ increased pHi and induced a 4-fold increase of basal insulin release. We conclude that, in contrast with previous assumptions, glucose increases intracellular pH in the islet cells. This effect may be coupled to the glucose metabolism and associated with triggering of insulin release.

This content is only available as a PDF.
You do not currently have access to this content.