Many clinically important or mechanistically interesting inhibitors react with enzymes by a branched pathway in which inactivation of the enzyme and formation of product are competing reactions. The steady-state kinetics for this pathway [Waley (1980) Biochem. J. 185, 771-773] gave equations for progress curves that were cumbersome. A convenient linear plot is now described. The time (t1/2) for 50% inactivation of the enzyme (this is also the time for 50% formation of product), or for 50% loss of substrate, is measured in a series of experiments in which the concentration of inhibitor, [I]0, is varied; in these experiments the ratio of the concentration of enzyme to the concentration of inhibitor is kept fixed. Then a plot of [I]0 X t1/2 against [I]0 is linear, and the kinetic parameters can be found from the slope and intercept. Furthermore, simplifications of the equations for progress curves are described that are valid when the concentration of inhibitors is high, or is low, or when the extent of reaction is low. The use of simulated data has shown that the recommended methods are not unduly sensitive to experimental error.

This content is only available as a PDF.
You do not currently have access to this content.