Models for the structures of subcomponent C1q of first component C1 of human complement and its complex with subunit C1r2C1s2 are compared with experimental neutron-scattering curves. The length of the C1q collagenous arm is closer to 14.5 nm than to 11.5 nm proposed from electron microscopy, and this is consistent with the primary sequence of C1q. The mean C1q base-arm angle is 40-45 degrees and C1q is found to be flexible: the base-arm angle can vary up to 30 degrees from equilibrium at any moment. The complex of C1r2C1s2 and C1q requires a large shape change in C1r2C1s2. Ring-like models for C1r2C1s2 are not as successful at rationalizing the scattering data as are models that involve C1r2C1s2 binding to one side of C1q. Hydrodynamic calculations of the sedimentation coefficients for C1q and C1 are generally consistent with these neutron models.

This content is only available as a PDF.
You do not currently have access to this content.