When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
January 1987
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
January 01 1987
Cytosolic ratios of free [NADPH]/[NADP+] and [NADH]/[NAD+] in mouse pancreatic islets, and nutrient-induced insulin secretion
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1987 London: The Biochemical Society
1987
Biochem J (1987) 241 (1): 161–167.
Citation
C J Hedeskov, K Capito, P Thams; Cytosolic ratios of free [NADPH]/[NADP+] and [NADH]/[NAD+] in mouse pancreatic islets, and nutrient-induced insulin secretion. Biochem J 1 January 1987; 241 (1): 161–167. doi: https://doi.org/10.1042/bj2410161
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |