Administration of dexamethasone to pregnant rats at 19 days gestation increased phosphatidylcholine synthesis (45%) from radioactive choline in type II cells. This enhanced synthesis of phosphatidylcholine was accompanied by an increased conversion of choline phosphate into CDP-choline. Similar results were obtained by incubating organotypic cultures of 19-day-fetal rat lung with cortisol. The increased conversion of choline phosphate into CDP-choline correlated with an enhanced choline-phosphate cytidylyltransferase activity (31% after dexamethasone treatment; 47% after cortisol exposure) in the cell homogenates. A similar increase (26% after dexamethasone treatment; 39% after cortisol exposure) was found in the microsomal-associated enzyme. No differences in cytosolic enzyme activity were observed. The specific activity of the microsomal enzyme was 3-4 times that of the cytosolic enzyme. Most of the enzyme activity was located in the microsomal fraction (58-65%). The treatments had no effect on the total amount of enzyme recovered from the cell homogenates. These results, taken collectively, are interpreted to indicate that the active form of cytidylyltransferase in type II cells is the membrane-bound enzyme and that cytidylyltransferase activation in type II cells from fetal rat lung after maternal glucocorticoid administration occurs by binding of inactive cytosolic enzyme to endoplasmic reticulum.

This content is only available as a PDF.
You do not currently have access to this content.