The effect of Shiga toxin, from Shigella dysenteriae 1, on the component reactions of peptide elongation were investigated. Enzymic binding of [3H]phenylalanine-tRNA to reticulocyte ribosomes was inhibited by 50% at 7 nM toxin. Elongation factor 1 (eEF-1)-dependent GTPase activity was also inhibited. Both reactions were not restored by addition of excess eEF-1 protein. In contrast, toxin concentrations of 200 nM were required to inhibit by 50% the elongation factor 2 (eEF-2)-dependent translocation of aminoacyl-tRNA on ribosomes. Addition of excess eEF-2 restored translocation activity. The eEF-2-dependent GTPase activity was unaffected at toxin concentrations below 100 nM, and Shiga-toxin concentrations of up to 1,000 nM did not affect either GTP.eEF-2.ribosome complex-formation or peptidyltransferase activity. Thus Shiga toxin closely resembles alpha-sarcin in action, both being primary inhibitors of eEF-1-dependent reactions. In contrast, the 60 S ribosome inactivators ricin and phytolaccin are primary inhibitors of eEF-2-dependent reactions of peptide elongation.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
June 1987
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
June 01 1987
The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1987 London: The Biochemical Society
1987
Biochem J (1987) 244 (2): 287–294.
Citation
T G Obrig, T P Moran, J E Brown; The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem J 1 June 1987; 244 (2): 287–294. doi: https://doi.org/10.1042/bj2440287
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |