Both alterations of enzyme content and a markedly decreased secretory response to selected physiological stimuli have been demonstrated previously in the pancreas of the obese Zucker rat. The purpose of the present investigation was to determine the degree to which alterations of enzyme content could be attributed to changes in enzyme biosynthesis. Amylase content of obese rats was decreased by 50%, whereas lipase and trypsinogens were significantly increased. However, the decrease in amylase content was less than might have been predicted from the rate of amylase biosynthesis (80% decrease), and the increases in content of trypsinogen(s) and lipase were greater than would have been predicted from alterations in the absolute rates of biosynthesis. In view of the rapid turnover of pancreatic enzymes under normal conditions, it seems probable that a markedly decreased secretory response to various stimuli leads to an increased content of some enzymes in the pancreas of the obese rat. Ciglitazone treatment, which decreases insulin resistance in obese animals and leads to normalization of glucose metabolism in their pancreatic tissue, restored the enzyme-synthesis rates towards normal, showing that the abnormalities of enzyme synthesis were linked to the insulin resistance rather than to the obese genotype itself. Lipid inclusion bodies were found in acinar cells of obese rats. These bodies have previously been described in acinar cells of starved animals, which, in common with the acinar tissue of the obese Zucker rat, have decreased glucose metabolism.

This content is only available as a PDF.
You do not currently have access to this content.