Samples of adipose tissue were obtained from different sites in bovine and ovine foetuses and newborns. RNA was isolated and analysed using bovine cDNA and ovine genomic probe for uncoupling protein (UCP), cDNA for subunits III and IV of cytochrome c oxidase and cDNA for ADP/ATP carrier. UCP mRNA was characterized for the first time in foetal bovine and ovine adipose tissue. It appeared later than mRNA of cytochrome c oxidase subunit III, and increased dramatically at birth (10-fold). ADP/ATP carrier mRNA was expressed at a lower level but also increased 10-fold at birth. It was demonstrated that UCP mRNA reached its highest level at birth in all bovine adipose tissues studied, except subcutaneous tissue. It disappeared quickly afterwards, being no longer detectable two days after birth. Similar variations were observed in newborn lambs. ADP/ATP carrier mRNA showed the same pattern of expression as UCP mRNA; although it was still lightly expressed two days after birth, it disappeared soon afterwards. Only mRNAs for cytochrome c oxidase subunits III and IV remained at the same level during the first postnatal week. On the basis of these data and of observations reported in the literature a sequence of events for the development of brown adipose cells in vivo is proposed. Soon after birth the perirenal adipose tissue of ruminants, which still contains mitochondria of typical brown adipose tissue morphology and high levels of cytochrome c oxidase mRNA, lacks UCP mRNA. Can it still be considered as brown fat? Ruminant species appear to be attractive models to study both the differentiation of brown adipose tissue and its possible conversion to white fat in large animals.

This content is only available as a PDF.
You do not currently have access to this content.