Rat islets were used to compare the mechanisms whereby adenosine and adrenaline inhibit insulin release. Adenosine (1 microM-2.5 mM) and its analogue N6(-)-phenylisopropyladenosine (L-PIA) (1 nM-10 microM) caused a concentration-dependent but incomplete (45-60%) inhibition of glucose-stimulated release. L-PIA was more potent than D-PIA [the N6(+) analogue], but much less than adrenaline, which caused nearly complete inhibition (85% at 0.1 microM). 8-Phenyltheophylline prevented the inhibitory effect of L-PIA and 50 microM-adenosine, but not that of 500 microM-adenosine or of adrenaline. In contrast, yohimbine selectively prevented the inhibition by adrenaline. Adenosine and L-PIA thus appear to exert their effects by activating membrane A1 receptors, whereas adrenaline acts on alpha 2-adrenergic receptors. Adenosine, L-PIA and adrenaline slightly inhibited 45Ca2+ efflux, 86Rb+ efflux and 45Ca2+ influx in glucose-stimulated islets. The inhibition of insulin release by adenosine or L-PIA was totally prevented by dibutyryl cyclic AMP, but was only attenuated when adenylate cyclase was activated by forskolin or when protein kinase C was stimulated by a phorbol ester. Adrenaline, on the other hand, inhibited release under these conditions. It is concluded that inhibition of adenylate cyclase, rather than direct changes in membrane K+ and Ca2+ permeabilities, underlies the inhibition of insulin release induced by activation of A1-receptors. The more complete inhibition mediated by alpha 2-adrenergic receptors appears to result from a second mechanism not triggered by adenosine.

This content is only available as a PDF.
You do not currently have access to this content.