The kinetics of oxidation of the Fe proteins of nitrogenases from Klebsiella pneumoniae (Kp2) and Azotobacter chroococcum (Ac2) by O2 and H2O2 have been studied by stopped-flow spectrophotometry at 23 degrees C, pH 7.4. With excess O2, one-electron oxidation of Kp2 and Ac2 and their 2 MgATP or 2 MgADP bound forms occurs with rate constants (k) in the range 5.3 x 10(3) M-1.S-1 to 1.6 x 10(5) M-1.S-1. A linear correlation between log k and the mid-point potentials (Em) of these protein species indicates that the higher rates of electron transfer from the Ac2 species are due to the differences in Em of the 4Fe-4S cluster. The reaction of Ac2(MgADP)2 with O2 is sufficiently rapid for it to contribute significantly to the high respiration rate of Azotobacter under N2-fixing conditions and may represent a new respiratory pathway. Excess O2 rapidly inactivates Ac2(MgADP)2 and Kp2(MgADP)2; however, when these protein species are in greater than 4-fold molar excess over the concentration of O2, 4 equivalents of protein are oxidized with no loss of activity. The kinetics of this reaction suggest that H2O2 is an intermediate in the reduction of O2 to 2 H2O by nitrogenase Fe proteins and imply a role for catalase or peroxidase in the mechanism of protection of nitrogenase from O2-induced inactivation.

This content is only available as a PDF.
You do not currently have access to this content.