The ability of lithium to interfere with phosphoinositide metabolism in rat cerebral cortex slices has been examined by monitoring the accumulation of CMP-phosphatidate (CMP-PtdOH) and the reduction in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 levels. A small accumulation of [14C]CMP-PtdOH was seen in slices prelabelled with [14C]cytidine and stimulated with carbachol (1 mM) or Li+ (1 mM). However, simultaneous addition of both agents for 30 min produced a 22-fold accumulation, with Li+ producing a half-maximal effect at a concentration of 0.61 +/- 0.19 mM. Kinetic studies revealed that the effects of carbachol and Li+ on CMP-PtdOH accumulation occurred with no initial lag apparent under these conditions and that preincubation with myo-inositol (10 or 30 mM) dramatically attenuated CMP-PtdOH accumulation. myo-Inositol could also attenuate the rate of accumulation of CMP-PtdOH when added 20 min after carbachol and Li+; these effects were not observed when equimolar concentrations of scyllo-inositol were added. Use of specific radioreceptor assays allowed the mass accumulations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 to be monitored. Following a lag of 5-10 min, Li+ resulted in a marked reduction in the accumulation of both inositol polyphosphates resulting from muscarinic-cholinergic stimulation. Preincubation of cerebral cortex slices with myo- (but not scyllo-) inositol delayed, but did not prevent, the reduction in the accumulation of Ins(1,4,5)P3 or Ins(1,3,4,5)P4. The results suggest that cerebral cortex, at least in vitro, is very sensitive to myo-inositol depletion under conditions of muscarinic receptor stimulation. The relationship of such depletion to the generation of inositol polyphosphate second messengers is discussed.

This content is only available as a PDF.
You do not currently have access to this content.