Mushroom tyrosinase, which is known to convert a variety of o-diphenols into o-benzoquinones, has been shown to catalyse an unusual oxidative decarboxylation of 3,4-dihydroxymandelic acid to 3,4-dihydroxybenzaldehyde [Sugumaran (1986) Biochemistry 25, 4489-4492]. The mechanism of this reaction was re-investigated. Although visible-region spectral studies of the reaction mixture containing 3,4-dihydroxymandelic acid and tyrosinase failed to generate the spectrum of a quinone product during the steady state of the reaction, both trapping experiments and non-steady-state kinetic experiments provided evidence for the transient formation of unstable 3,4-mandeloquinone in the reaction mixture. The visible-region spectrum of mandeloquinone resembled related quinones and exhibited an absorbance maximum at 394 nm. Since attempts to trap the second intermediate, namely alpha,2-dihydroxy-p-quinone methide, were in vain, mechanistic studies were undertaken to provide evidence for its participation. The decarboxylative quinone methide formation from 3,4-mandeloquinone dictates the retention of a proton on the alpha-carbon atom. Hence, if we replace this proton with deuterium, the resultant 3,4-dihydroxybenzaldehyde should retain the deuterium present in the original substrate. To test this hypothesis, we chemoenzymically synthesized alpha-deuterated 3,4-dihydroxymandelic acid and examined its enzymic oxidation. Our studies reveal that the resultant 3,4-dihydroxybenzaldehyde retained nearly 90% of the deuterium, strongly indicating the transient formation of quinone methide. On the basis of these findings it is concluded that the enzymic oxidation of 3,4-dihydroxymandelic acid generates the conventional quinone product, which, owing to its unstability, is rapidly decarboxylated to generate transient alpha,2-dihydroxy-p-quinone methide. The coupled dienone-phenol re-arrangement and keto-enol tautomerism of this quinone methide produce the observed 3,4-dihydroxybenzaldehyde.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
January 1992
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
January 15 1992
Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid
M Sugumaran;
M Sugumaran
1Department of Biology, University of Massachusetts at Boston, Harbor Campus, Boston, MA 02125, U.S.A.
Search for other works by this author on:
H Dali;
H Dali
1Department of Biology, University of Massachusetts at Boston, Harbor Campus, Boston, MA 02125, U.S.A.
Search for other works by this author on:
V Semensi
V Semensi
1Department of Biology, University of Massachusetts at Boston, Harbor Campus, Boston, MA 02125, U.S.A.
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1992 The Biochemical Society, London
1992
Biochem J (1992) 281 (2): 353–357.
Citation
M Sugumaran, H Dali, V Semensi; Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid. Biochem J 15 January 1992; 281 (2): 353–357. doi: https://doi.org/10.1042/bj2810353
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |