1. Cyclofenil diphenol (F6060), a weak non-steroidal oestrogen, was shown previously to inhibit [35S]proteoglycan synthesis [Mason, Lineham, Phillipson & Black (1984) Biochem. J. 223, 401-412] and to induce fragmentation of the Golgi apparatus into small vesicles [Lancaster, Fryer, Griffiths & Mason (1989) J. Cell Sci. 92, 271-280] in cultures of Swarm chondrosarcoma chondrocytes. Two structurally related compounds, F6204 and F6091, show a similar concentration-related effect, with complete inhibition of [35S]proteoglycan synthesis at 90 micrograms/ml. The apparent [3H]protein synthesis is only approx. 40% inhibited with [3H]lysine as precursor. Stilboestrol, clomiphene and tamoxiphen are also potent inhibitors of [35S]proteoglycan synthesis. 2. Syntheses of chondroitin 4-[35S]sulphate and chondroitin 6-[35S]sulphate, which are Golgi-mediated events, are inhibited 40-68% and 3-48% respectively by concentrations of cyclofenil between 50 and 70 micrograms/ml. [3H]Hyaluronan synthesis, which occurs by a different mechanism at the plasma membrane, is inhibited by 47-66%. These results suggest that cyclofenil may act via more than one inhibitory mechanism. Cyclofenil diphenol inhibits polymerization of chondroitin sulphate on to p-nitrophenyl beta-xyloside even when the chondrocytes are loaded with the initiator prior to treatment. 3. Cyclofenil diphenol interferes with the cellular uptake of amino acids via the system A carrier, as shown by inhibition of uptake of methylaminoisobutyric acid, a specific substrate for this system. The drug had no effect on the uptake of 2-deoxyglucose by the cells. 4. Cyclofenil diphenol (90 micrograms/ml) caused a decrease in the pool size of UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-hexoses, but this was insufficient to account for the accompanying profound inhibition of [35S]proteoglycan synthesis. Entry of [3H]glucosamine into the cell and into the UDP-N-acetylhexosamine pool did not appear to be affected. 5. Cyclofenil diphenol inhibited the substitution of 3H-labelled proteoglycan core protein with chondroitin sulphate chains. Core protein was identified in treated cultures on the basis of immunoprecipitation with an antiserum against the hyaluronate-binding region and distinguished from precipitated proteoglycan on SDS/PAGE.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
January 1992
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
January 15 1992
Effects of cyclofenil diphenol, an agent which disrupts Golgi structure, on proteoglycan synthesis in chondrocytes
R M Mason;
R M Mason
1Department of Biochemistry, Charing Cross and Westminster Medical School, Fulham Palace Road, London W6 8RF, U.K.
Search for other works by this author on:
C A Lancaster
C A Lancaster
1Department of Biochemistry, Charing Cross and Westminster Medical School, Fulham Palace Road, London W6 8RF, U.K.
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1992 The Biochemical Society, London
1992
Biochem J (1992) 281 (2): 525–531.
Citation
R M Mason, C A Lancaster; Effects of cyclofenil diphenol, an agent which disrupts Golgi structure, on proteoglycan synthesis in chondrocytes. Biochem J 15 January 1992; 281 (2): 525–531. doi: https://doi.org/10.1042/bj2810525
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |