Micromolar concentrations of cis-fatty acid synergistically activate type III protein kinase C with diacylglycerol. This synergistic effect occurs at low concentrations of cis-fatty acid and diacylglycerol, and it is capable of inducing almost full activation of this protein kinase C subtype at a physiologically relevant Ca2+ concentration (2 microM). The synergistic activation mode can be observed even in the absence of Ca2+, but micromolar Ca2+ significantly enhances the type III protein kinase C activation. cis-Fatty acid also augments the diacylglycerol-induced activation of other subtypes (type I and II), although the effect is smaller than that observed in type III. Neither the diacylglycerol- nor the cis-fatty acid-dependent mode of activation can fully activate any of these subtypes at a physiological concentration of Ca2+ (2 microM). Our results suggest that the generation of three second messengers, i.e. the increase in intracellular Ca2+ concentration and the generation of both cis-fatty acid and diacylglycerol in the cell, may be necessary signals for protein kinase C activation, particularly for type III protein kinase C.

This content is only available as a PDF.
You do not currently have access to this content.