Increasing evidence suggests that ethanol-induced changes in cyclic AMP (cAMP) signal transduction play a critical role in the acute and chronic effects of ethanol. Here we have investigated the effects of ethanol on cAMP signal transduction in primary cultures of rat hepatocytes. Acute exposure to ethanol had a biphasic effect on glucagon-receptor-dependent cAMP production in intact cells: 25-50 mM-ethanol decreased cAMP, whereas treatment with 100-200 mM-ethanol increased cAMP. After chronic exposure to 50-200 mM-ethanol for 48 h in culture, glucagon-receptor-dependent cAMP levels were increased, but no change in glucagon receptor number was observed. These effects of ethanol were independent of ethanol oxidation. Chronic ethanol treatment also increased adenosine-receptor- and forskolin-stimulated cAMP production. Increased cAMP production was also observed upon stimulation of adenylate cyclase with glucagon, forskolin and F- in membranes isolated from cells cultured with 100 mM-ethanol for 48 h. However, no differences were observed in basal and MnCl2-stimulated adenylate cyclase activity. The quantity of alpha i protein was decreased by 35% after chronic ethanol treatment, but no change in the quantity of alpha s protein was detected. Decreased alpha i protein was associated with a decrease in G(i) function, as assessed by the ability of 0.1 nM-guanosine 5′-[beta gamma-imido]triphosphate and 1 microM-somatostatin to inhibit forskolin-stimulated adenylate cyclase activity. Taken together, these results suggest that chronic exposure to ethanol increases receptor-dependent cAMP production in hepatocytes by decreasing the quantity of alpha i protein at the plasma membrane and thereby decreasing the inhibitory effects of G(i) on adenylate cyclase activity.

This content is only available as a PDF.
You do not currently have access to this content.