D-Xylose isomerases are metal-ion (Mn2+, Co2+, Mg2+)-requiring tetrameric enzymes. Both the stoichiometry and the binding constants have been determined by titrating the metal-ion-free enzymes from five organisms (Actinomycetaceae and more divergent bacteria) with the respective metal ions using the enzyme activity as indicator of active complex-formation. The following characteristics have been observed for each specific isomerase: (i) two essential metal ion sites (one structural and one catalytic) exist per subunit; (ii) the metal ion binding at one site does not affect the binding at the other site; (iii) of the four possible configurations E, aE, Eb and aEb, only the double-occupied enzyme is active; (iv) the metal ion activation is a time-dependent process; (v) the dissociation constants for both the structural and catalytic sites may be identical or may differ by one or higher orders of magnitude; (vi) metal ion binding is stronger in the order Mn2+ greater than Co2+ much greater than Mg2+; (vii) pronounced increases in Km values concomitant with decreasing equivalents of metal ion added are only observed in the presence of Mg2+ ions.

This content is only available as a PDF.
You do not currently have access to this content.