In an NG 108-15 neuroblastoma x glioma hybrid cell suspension, extracellular ATP (via P2-purinergic receptors) and bradykinin stimulated Ins(1,4,5)P3 formation, which was accompanied by an increase in the cytosolic Ca2+ concentration ([Ca2+]i). Leucine enkephalin (EK) also slightly increased [Ca2+]i in the absence, but not in the presence, of apyrase, which hydrolyses extracellular ATP and ADP to AMP. When the cells were stimulated by P2-agonists or bradykinin prior to the application of EK, EK induces a remarkable rise in [Ca2+]i. This P2-agonist- or bradykinin-assisted EK action was also observed in single cells on a coverslip. A decrease in the extracellular Ca2+ concentration only slightly lowered the EK-induced rise in [Ca2+]i, but treatment of the cells with thapsigargin, an agent which depletes Ca2+ in the Ins(1,4,5)P3-sensitive pool, almost completely abolished EK action. The observed permissive stimulation by EK of Ins(1,4,5)P3 formation induced by a P2-agonist or bradykinin may be a primary event for the EK-induced [Ca2+]i rise. These actions of EK were antagonized by naloxone and completely reversed by prior treatment of the cells with pertussis toxin, whereas the toxin hardly affected the actions of P2-agonists and bradykinin themselves. Thus EK can induce phospholipase C activation and subsequent Ca2+ mobilization, provided that the cells have been previously or are simultaneously stimulated by endogenous adenine nucleotides or by externally applied P2-agonists or bradykinin. In this cross-talk mechanism between opioid receptors and these Ca(2+)-mobilizing agonist receptors, pertussis toxin-sensitive G-proteins play a permissive role.
Skip Nav Destination
Article navigation
February 1993
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
February 15 1993
Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108–15 cells. A permissive role for pertussis toxin-sensitive G-proteins
F Okajima;
F Okajima
1Department of Physical Biochemistry, Institute of Endocrinology, Gunma University, Maebashi 371, Japan
Search for other works by this author on:
H Tomura;
H Tomura
1Department of Physical Biochemistry, Institute of Endocrinology, Gunma University, Maebashi 371, Japan
Search for other works by this author on:
Y Kondo
Y Kondo
1Department of Physical Biochemistry, Institute of Endocrinology, Gunma University, Maebashi 371, Japan
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1993 The Biochemical Society, London
1993
Biochem J (1993) 290 (1): 241–247.
Citation
F Okajima, H Tomura, Y Kondo; Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108–15 cells. A permissive role for pertussis toxin-sensitive G-proteins. Biochem J 15 February 1993; 290 (1): 241–247. doi: https://doi.org/10.1042/bj2900241
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.