We investigated whether phosphatidylinositol 3-kinase (PI3K) is phosphorylated and whether its specific activity is increased by insulin stimulation in vivo using Fao cells and antibodies raised against the 85 kDa subunit of PI3K, insulin-receptor substrate-1 (IRS-1), and phosphotyrosine (pTyr). PI3K activity was detected in the immunoprecipitate produced with anti-PI3K at a basal state. The activity was increased 2-3-fold by insulin stimulation, although the protein concentration of kinase in the anti-PI3K immunoprecipitates was the same before and after insulin stimulation. Both anti-pTyr and anti-IRS-1 antibodies immunoprecipitated the kinase activity only after insulin stimulation. After the first immunoprecipitation with anti-pTyr, the supernatant was immunoprecipitated once more with anti-PI3K. PI3K activity in the second immunoprecipitate revealed little difference between the basal and insulin-stimulated states, suggesting that most of the insulin-activated portion of PI3K was precipitated by anti-pTyr. Both IRS-1 and the insulin-receptor beta-subunit (95 kDa) were phosphorylated on tyrosine residues by insulin stimulation and immunoprecipitated with anti-pTyr. However, phosphorylation of neither subunit of PI3K (85 kDa or 110 kDa) was detectable in the immunoprecipitate produced with anti-pTyr. The 185 kDa pTyr-containing protein was immunoprecipitated with anti-PI3K after insulin stimulation, although there was little phosphorylation of the 85 kDa protein. pTyr in the 110 kDa protein immunoprecipitated with anti-PI3K was below detectable levels. These results indicate that the specific activity of PI3K is increased by insulin stimulation without detectable tyrosine phosphorylation of PI3K itself in Fao cells. The majority of the insulin-activated portion of PI3K is associated with pTyr-containing proteins including IRS-1, which suggests that this is important for activation of PI3K by insulin.

This content is only available as a PDF.
You do not currently have access to this content.