The effect of electrically induced muscle contraction, insulin (10 m-units/ml) and electrically-induced muscle contraction in the presence of insulin on insulin-regulatable glucose-transporter (GLUT-4) protein distribution was studied in female Sprague-Dawley rats during hindlimb perfusion. Plasma-membrane cytochalasin B binding increased approximately 2-fold, whereas GLUT-4 protein concentration increased approximately 1.5-fold above control with contractions, insulin, or insulin + contraction. Microsomal-membrane cytochalasin B binding and GLUT-4 protein concentration decreased by approx. 30% with insulin or insulin + contraction, but did not significantly decrease with contraction alone. The rate of muscle glucose uptake was assessed by determining the rate of 2-deoxy[3H]glucose accumulation in the soleus, plantaris, and red and white portions of the gastrocnemius. Both contraction and insulin increased glucose uptake significantly and to the same degree in the muscles examined. Insulin + contraction increased glucose uptake above that of insulin or contraction alone, but this effect was only statistically significant in the soleus, plantaris and white gastrocnemius. The combined effects of insulin + contraction of glucose uptake were not fully additive in any of the muscles investigated. These results suggest that (1) insulin and muscle contraction are mobilizing two separate pools of GLUT-4 protein, and (2) the increase in skeletal-muscle glucose uptake due to insulin + contraction is not due to an increase in plasma-membrane GLUT-4 protein concentration above that observed for insulin or contraction alone.

This content is only available as a PDF.
You do not currently have access to this content.