A novel 49 kDa protein, which exhibits nucleotide-dependent cross-linking of microtubules in vitro and localizes to ordered microtubule arrays by immunofluorescent staining, has been purified to apparent homogeneity from the brine shrimp, Artemia. Electrophoretic analysis involving isoelectric focusing and two-dimensional gels, supplemented by staining of Western blots with affinity-purified antibody, revealed that the 49 kDa protein consists of five isoforms with pI values of 6.0-6.2. The amount of 49 kDa protein increased slightly, but its isoform composition did not change significantly, during development of Artemia gastrula to third-instar larvae. Treatment with alkaline phosphatase caused the 49 kDa protein to undergo a mobility shift on gel electrophoresis, and, by use of an antibody to phosphoserine, at least two isoforms of the protein were shown to be phosphorylated. The serine phosphate, presumably added by a post-translational mechanism, did not influence binding of the 49 kDa protein to microtubules. Under conditions in which microtubules were cross-linked, the 49 kDa protein failed to interact with actin filaments. Our results demonstrate that the 49 kDa protein, like other structural microtubule-associated proteins such as tau and MAP2, is composed of several isoforms, some of which are phosphorylated. This protein has the potential to regulate the spatial distribution of microtubules within cells but does not link microfilaments to one another or to microtubules.

This content is only available as a PDF.
You do not currently have access to this content.