31P-NMR spectroscopy was used to identify reaction intermediates during catalytic turn-over of the fructose-2,6-bisphosphatase domain (Fru-2,6-P2ase) of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. When fructose-2,6-bisphosphate (Fru-2,6-P2) was added to the enzyme, the 31P-NMR spectrum showed three resonances in addition to those of free substrate: the phosphohistidine (His-P) intermediate, the C-6 phosphoryl group of fructose-6-phosphate bound to the phosphoenzyme, and phosphate generated by the hydrolysis of substrate. Direct analysis of the alkali-denatured phospho-enzyme intermediate by 1H-31P heteronuclear multiple quantum-filtered coherence spectroscopy confirmed the formation of 3-N-phosphohistidine. Binding of fructose 6-phosphate to the bisphosphatase was detected by a down-field shift and broadening of the C-6 phosphoryl resonance. The down-field shift was greater in the presence of the phosphoenzyme intermediate. Inhibition of Fru-2,6-P2 hydrolysis by fructose 6-phosphate and Fru-2,6-P2 was shown to involve binding of the sugar phosphates to the phosphoenzyme. This study provides new experimental evidence in support of the reaction mechanism of Fru-2,6-P2ase and suggests that the steady-state His-P intermediate exists primarily in the E-P.fructose 6-phosphate complex. These results lay a solid foundation for the use of 31P-NMR magnetization transfer studies to provide an in-depth analysis of the bisphosphatase reaction mechanism.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
May 1995
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
May 15 1995
Identification of transient intermediates in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by 31P-NMR spectroscopy Available to Purchase
D A Okar;
D A Okar
*Department of Biochemistry, School of Medicine, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Search for other works by this author on:
L T Kakalis;
L T Kakalis
†Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, U.S.A.
Search for other works by this author on:
S S Narula;
S S Narula
†Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, U.S.A.
Search for other works by this author on:
I M Armitage;
I M Armitage
†Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, U.S.A.
Search for other works by this author on:
S J Pilkis
S J Pilkis
*Department of Biochemistry, School of Medicine, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1995 The Biochemical Society, London
1995
Biochem J (1995) 308 (1): 189–195.
Citation
D A Okar, L T Kakalis, S S Narula, I M Armitage, S J Pilkis; Identification of transient intermediates in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by 31P-NMR spectroscopy. Biochem J 15 May 1995; 308 (1): 189–195. doi: https://doi.org/10.1042/bj3080189
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |